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INTRODUCTION

The Bayesian statistical method has now been
used for about ten years in radiocarbon dating. It
has become a widely used and commonly accept-
ed method to consider additional information
about the samples within the calibration process.
(For details on the standard calibration proce-
dure for radiocarbon age determination see e.g.
BOWMAN 1990.) In most cases, the available addi-
tional information is the knowledge about time
relations of the samples, derived from strati-
graphic conditions. Depending on the shape of
the calibration curve the common calibration
procedure may produce calibrated ages with
much larger uncertainty ranges than that of the
uncalibrated radiocarbon ages. For instance large
wiggles in the calibration curve enlarge the
uncertainty of the calibrated age considerably, as
shown in details below. Including additional
information within the calibration process by
means of Bayesian statistics can compensate for
this increase of the uncertainty.

Although the Bayesian method is widely used,
it is often difficult for the user to get a clear idea
about the detailed procedure underlying the
method. Therefore, it is our intent to give a sim-
ple description of the basic mechanism of the
method in this article. Formulas, avoided in the
text, are presented in a short appendix.

HOW THE BAYESIAN METHOD WORKS

First Example

Before entering into Bayesian statistics, let us first
have a look at the normal calibration process of a
single radiocarbon sample. We start with a radio-
carbon measurement with a known uncertainty.
On the vertical axis in Fig. 1, x1 indicates the
measured radiocarbon age surrounded by a
Gaussian-shaped probability function, that gives
the uncertainty of the radiocarbon date x1 due to
the measurement error. The function m(Q) is the

calibration curve that gives the relation between
the uncalibrated – the so-called conventional –
radiocarbon age based on the measured 14C/12C
ratio of the sample, and the calibrated (true)
age Q. The calibration curve used in this example
is an artificial one, chosen to support our exam-
ple. (It is also assumed that this calibration curve
has no uncertainty attached to it, while in reality
it does have a finite width due to the procedure to
establish the calibration curve itself.) The units
for the numbers of both radiocarbon age and cal-
ibrated age are given in years Before Present
(yr BP; present corresponds to 1950 AD). Note,
that the calibrated age on the horizontal axis of
Fig. 1 – and also in all analogue figures – increas-
es from the left to the right. This presentation of
calibrated ages is not very common, but for the
following discussion it is better to envision
increasing ages on both axes.

Age calibration of a single sample means to
find the so-called likelihood function L1, that
shows how well a particular true age Q fits to the
measured radiocarbon age x1. The procedure to
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Fig. 1  The principle technique to calibrate a single radio-
carbon age. The single sample calibration or ‘likelihood
function’ L1 shows how well a particular calendar age Q
fits to the measured value x1. Technically this function is
produced by transforming the Gaussian shaped probabil-
ity distribution of the radiocarbon measurement to the
axis of the calibrated age, by using the calibration curve
m(Q). Note that an artificial calibration curve is used here 

to produce an obvious example



get this likelihood function is very simple. One
only has to take the value of the Gaussian proba-
bility function around x1 for each position on the
radiocarbon age axis and to apply this value to the
corresponding position on the calibrated age
axis, as given by the calibration curve. This proce-
dure is illustrated by the dashed lines for two posi-
tions in Fig. 1. (Please note that only the shape of
the probability function carries the information
relevant to our discussion. Therefore, we don’t
use units on axes characterising probabilities.)
The shape of the likelihood function L1 clearly
shows the main problem of radiocarbon calibra-
tion. Due to the wiggle in the calibration curve,
the likelihood function is dispersed and produces
two regions on the true or calibrated age scale
that match the measured radiocarbon age. It can-
not be clarified from which of the two time ranges
the sample originates by investigating one sample
only.

Now we assume a second sample yielding the
uncalibrated radiocarbon age x2. In Fig. 2 one
can see both radiocarbon ages x1 and x2 and the
likelihood functions of the two samples L1 and L2.
Furthermore, we assume that sample 1 is younger
than sample 2, which is a common type of addi-
tional information provided by a stratigraphic sit-
uation of an archaeological excavation. Obvious-
ly, only the marked peaks of L1 and L2 in Fig. 2
agree with this given chronological order and the
other parts of the likelihood functions should be
suppressed. What we need, is a method that can
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Fig. 2 First example: There are two samples with radiocar-
bon ages x1 and x2 and the additional information that
sample 1 is younger than sample 2. By independent cali-
bration, we get two likelihood functions L1 and L2. Obvi-
ously, only the peaks marked with arrows agree with the 

assumed chronological order

Fig. 3 First example (continued): a) The two-dimensional
likelihood function L, that is the product of both single-
sample likelihood functions L1 and L2. b) The prior (or ‘a
priori’) probability A, containing the available additional
information on the true sample ages Q1 and Q2. In our
example, sample 1 is known to be younger then sample 2.
So, the prior probability is high when Q1 < Q2 (left of the
diagonal), otherwise it is low (right side). c) The posterior
probability P is the product of likelihood function L and
prior probability A. Consequently, all regions where the
prior probability is low are suppressed, which can clearly
be seen. Finally, the marginal posterior probabilities P1

and P2 are the probabilities for the age of each single sam-
ple. They are the projections of the two-dimensional pos-
terior probability P to the sample age co-ordinates. 

(For details see text.)



deal with such additional information in a gener-
al mathematical way. The Bayesian statistics is
exactly the mathematical formalism which is
needed to utilise this additional information.

In the first step, the two likelihood functions
are multiplied point by point, resulting in the
two-dimensional likelihood function shown in
Fig. 3a. On the edges of the plane spanned by
the two axis of true or calibrated age Q1 and Q2,
the normal likelihood functions L1 and L2 as
explained above (Fig. 2) are shown again. Each
value of the two-dimensional function is the
product of the corresponding values of L1 and
L2. The meaning of this two-dimensional likeli-
hood function is now a probability of age com-
binations. The function value at a particular
point in the plane, e.g. with age co-ordinates
Q1 = 3350 yr BP and Q2 = 3400 yr BP, indicates
the degree of agreement of this particular age
combination with the set of measured radiocar-
bon ages (x1 and x2). In this example we get a
two-dimensional function. In general the dimen-
sionality of the likelihood function – and also
the prior and posterior function discussed below
– is equal to the number of radiocarbon sam-
ples, and can be quite high. High dimensional
functions are definitively a problem for our
imagination, nevertheless the principal mecha-
nism of the Bayesian method remains the same.
Therefore we will continue with our two-dimen-
sional example for better understanding.

The reason for using multi-dimensional func-
tions lies in the fact that it is a convenient way to
introduce the additional information mentioned
above into the procedure. In Fig. 3b the prior (‘a
priori’) probability function A is shown. This
function is the two-dimensional representation of
the additional information about the sample ages
derived from the stratigraphy. In this example,
sample 1 is known to be younger than sample 2.
Therefore the prior probability is high for all
combinations of age Q1 and age Q2 where Q1 is
less than Q2 (left of the diagonal in Fig. 3b) and
otherwise it is low (right side of Fig. 3b).

Having found the prior probability, the next
step is to combine it with the two-dimensional
likelihood function established above, which
contains the information from the radiocarbon
measurements. This is easily done by taking the
product of the two functions, that means to mul-
tiply the values of the likelihood function and
the prior function for each position in the two-
dimensional co-ordinate plane. The result is the

posterior function P, shown in Fig. 3c. This func-
tion gives now the probability for any particular
combination of the sample ages Q1 and Q2 to be
the true one, including both, the information
from measurement and the additional informa-
tion from stratigraphy. In our example, three of
the four peaks of the two-dimensional likelihood
function are located in the region with low prior
probability and therefore are strongly sup-
pressed within the posterior function.

The last step in our procedure is to go back
from the multi-dimensional co-ordinate space
representing age combinations to usual proba-
bilities for the single samples again. This is done
by projecting the multi-dimensional posterior
function P to the sample age co-ordinates, get-
ting the so-called marginal posterior probabili-
ties P1 and P2 of the single samples, also shown
in Fig. 3c. They give the probability that a con-
sidered sample has a particular true age based
on both, measurements and stratigraphic infor-
mation. This is the result we intended to
achieve. In Fig. 4 we finally compare the initial
single calibration likelihood functions L1 and L2

with the resulting marginal posterior probabili-
ties P1 and P2. It is shown very clearly, that only
these peaks remain within the posterior proba-
bility, that fulfil the condition that sample 1 is
younger than sample 2, according to our prior
knowledge. This is exactly what we claimed ini-
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Fig. 4 First example (continued): Comparison of the single
sample likelihood functions L1 and L2 that contain no
prior information (a) with the marginal posterior proba-
bilities P1 and P2 including the prior information (b).
Only these peaks remain within the posterior probability
fulfilling the condition that sample 1 is younger than 

sample 2, according to the existing prior knowledge



tially based on a qualitative consideration that
the Bayesian method should produce. So, in our
simple example, the method works very well,
and it can be assumed, that the Bayesian method
is applicable in other situations as well.

Second Example

Let us discuss shortly a second – also artificially
constructed – example, similar to the one
described above, but now using a different kind
of prior information. Again we restrict ourselves
to only two radiocarbon measurements for the
reason of simplified visualisation. Fig. 5 shows the
determination of the single sample likelihood
functions, as already explained above. Due to all
possible combinations of the three peaks of L1

with the two peaks of L2 there six peaks arise in
the multi-dimensional likelihood function, shown
in Fig. 6a. Unlike the first example, we now
assume that sample 1 is older than sample 2 by a
particular known value with a given uncertainty.
This leads to the shape of the prior probability
shown in Fig. 6b, looking like a wall with Gaussian
cross section. Analogous to the first example,
building the product of the multi-dimensional
likelihood function L and the prior function A
lets only this peak remain within the posterior
function P that fulfils the prior condition. Or in
other words, only this peak in the multi-dimen-
sional co-ordinate plane remains, that originates
from the combination of regions in the single cal-
ibration likelihood functions L1 and L2 having the
required age difference. Building the marginal
posterior probabilities as explained above, it is

again clearly shown that all regions are sup-
pressed that do not match the required condition
(Fig. 7).
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Fig. 5 Second example: Again we take two samples with
radiocarbon ages x1 and x2. L1 and L2 are their likelihood
functions obtained by independent calibration

Fig. 6 Second example (continued): a) Two-dimensional like-
lihood function L, and single-sample likelihood functions
L1 and L2. b) Prior probability A, containing the addi-
tional information on the true sample ages Q1 and Q2.
Unlike the first example, we now assume that sample 1 is
older than sample 2 by a particular known value with a
given uncertainty (60 ± 20 yr). This leads to the form
shown of the prior probability, which looks like a wall with
Gaussian cross section. c) Two-dimensional posterior
probability P and marginal posterior probabilities P1

and P2. (For details see text.)



Third Example – a ‘Real-World’ One

An early investigation, where Bayesian statistics
were used in conjunction with radiocarbon dat-

ing was performed by BUCK et al. 1994 for an exca-
vation of an Austrian Bronze Age village. We use
here the radiocarbon dates and the stratigraphic
relations investigated in this work to show a real-
istic application of the Bayesian method.

Naturally in a real-world application, the situa-
tion is more complex then in the artificial exam-
ples previously shown. Now we have ten-dimen-
sional functions according to a sample number of
ten, a lot of wiggles in the real calibration curve,
and a more complex prior information (see
Fig. 8). However, the method works just the same
way as explained above. Fig. 8a shows the pattern
of the overlapping uncertainty ranges of the
radiocarbon dates of ten measured samples, indi-
cated by their Gaussian probability distributions,
as well as the relevant section of the radiocarbon
calibration curve (IntCal 04 by REIMER et al. 2004).
Part (b) in Fig. 8 gives a symbolic representation
of the stratigraphic relations, which must be read
in the following way: Sample 10 is known to be
younger than sample 9 and 9 is known to be
younger than 8. The samples 3, 4, 6 and 7 are all
known to be older than 8, but the age relation
between them is unknown. Again, sample 3 is
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Fig. 7 Second example (continued): Comparison of the single
sample likelihood functions L1 and L2 (a) with the mar-
ginal posterior probabilities P1 and P2 (b). Analogous to
the first example, again only the peaks that are in agree-
ment with the prior knowledge remain within the poste-
rior probability which means that sample 1 has to 

be 60 ± 20 years older than sample 2

Fig. 8 Third example: In a real-world application the situation is more complex then in the artificial examples shown in
the previous figures. Now we have functions within a ten-dimensional mathematical space, many wiggles in the real cal-
ibration curve and more complex prior relations. The time relations between the individual samples based on the strati-
graphic information are given in (b): sample 10 is known to be younger than sample 9, sample 9 younger than 8. Sam-
ples 3, 4, 6 and 7 are all known to be older than 8, but the relationship between them is unknown. Again, 3 is younger
than 2 and so on. The data are taken from BUCK et al. 1994 from an excavation of an Austrian bronze age village



younger than 2 and so on. Nearer to archaeolog-
ical terms, the stratigraphy contains two phases.
The younger one contains the sequence 8-9-10,
the older one the sequences 1-2-3 and 5-6 and
additionally the samples 4 and 7. Across these
sequences (e.g. sample 3 vs. 5) no relation is
known.

In Fig. 9 we show a comparison of the likeli-
hood functions from single sample calibration
and the marginal posterior functions produced
by the Bayesian method for each sample, analo-
gous to Fig. 4 and Fig. 7 in the previous examples.
It is not necessary to discuss these functions in
detail, there can easily be seen two qualitative
aspects. First, the time ranges of possible ages
turn out to be much smaller in the posterior func-
tions then in the likelihood functions. Second,
the regions are shifted in accordance to the strati-
graphic relations. This can be seen when looking
e.g. at sample 8. As mentioned above, sample 8
has to be younger then the samples 3, 4, 6 and 7.
So, roughly spoken, all these samples try to shift
the posterior function of sample 8 to the younger
side of the age scale. This is what one sees when
comparing the likelihood function (Fig. 9a) and
posterior function (Fig. 9b) of sample 8. Of
course, both of the effects described have again
one basic reason: the suppression of all parts of
the (multi-dimensional) posterior function,
which do not agree with the prior probability, i.e.
the stratigraphical information.

Although we have seen that a large number of
samples does not change the method in princi-
pal, there is a non-negligible technical difference,
which will be discussed below. For further reading
about the application of Bayesian methods in
radiocarbon dating see e.g. BUCK et al. 1991,
BRONK RAMSEY 1995, 1998, BRONK RAMSEY et al.
2004, STEIER and ROM 2000.

GIBBS SAMPLING, THE KEY TO

NUMERICAL FEASIBILITY

For the simple examples with only two samples
measured, we had to deal with two-dimensional
functions. If we suppose to work with 100 points
on each of the two age co-ordinates within the
numerical calculations, this leads to 1002 =
10 000 points within the co-ordinate plane
spanned by two age co-ordinates. So, all func-
tions have to be evaluated at 10 000 points. This
is for sure no problem for a computer. But if we
suppose now that there are 15 samples and we
again use 100 points on each age axis, we get
10015 = 1030 points to be evaluated for our now
15-dimensional functions. Therefore, it is not
possible any more to calculate these functions
point by point. Fortunately, a very efficient
Monte-Carlo method can solve this problem, the
so-called Gibbs sampling.

The principle of doing the calculations with a
Monte Carlo method is to evaluate not all points
in the multi-dimensional co-ordinate space, but
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Fig. 9 Third example (continued): Single sample calibration without prior information (a), compared with the outcome of
the Bayesian method, including the prior information (b). Once again parts of the probability distributions that are 

not in agreement with the prior knowledge are suppressed



only a number of randomly drawn ones. It would
not, however, be very efficient to draw the points
really randomly out of the multi-dimensional
space, because many points would lie in areas
where the posterior function is nearly zero, as one
can imagine when looking at Fig. 3c or Fig. 6c.
These points would be useless, because they do
not contribute to the resulting marginal posterior
functions. In contrast, the Gibbs sampling finds a
pattern of points in the multi-dimensional co-
ordinate space where the density of the points
reproduces the probability function investigated.
These points can be found by evaluating only
one-dimensional slices within the multi-dimen-
sional probability function. These slices are con-
ditional probabilities with all dimensions but one
fixed. The procedure is the following: One starts
with calculating a slice e.g. in the first dimension,
choosing all other co-ordinates arbitrarily. This
slice represents a probability distribution along
the first dimension and out of this distribution a
position on the first co-ordinate is randomly
drawn. Next, a further slice is calculated along the
second dimension, located at the position of the
first draw. All other co-ordinates stay the same.
This procedure is repeatedly performed. When
reaching the last co-ordinate it jumps back to the
first and iterates all over. With each change of any
co-ordinate a new point is found. It can be shown
theoretically, that the density of their pattern con-
verges to the probability function processed.

Within the Bayesian method, Gibbs sampling
is used to find the marginal posterior probabili-
ties of the samples. As explained previously, the
marginals are projections of the multi-dimension-
al posterior probability to the single sample co-
ordinates. Mathematically, they are evaluated by
an integration – or summation when done
numerically – over the age co-ordinates of all
other samples. With the Gibbs sampling method
this summation can easily be done by projecting
every selected point onto the corresponding posi-
tions on each sample co-ordinate and adding
them up. This produces the correct marginal
probability distributions, because the density of
the points represents already the probability to be
integrated. So we only have to run the Gibbs sam-
pling on the multi-dimensional posterior proba-
bility. And the great advantage is, that there is no
need to evaluate all points of the posterior func-
tion before, because the method uses only one-
dimensional slices of the function.

Therefore, the use of Gibbs sampling makes

Bayesian statistics numerically feasible, allowing it
to become a powerful tool in radiocarbon cali-
bration widely used today. For more details to
Gibbs sampling and related numerical methods
see e.g. GILKS et al. 1996.

FINAL REMARK

We hope that this work shed some light on a
method which – although intrinsically complex –
is very useful for the reduction of the well-known
uncertainties of standard radiocarbon dating. Of
course, there are many detailed aspects and spe-
cialised applications of the method, as well as var-
ious questions and problems that are not men-
tioned in this article.

APPENDIX: BASIC MATHEMATICAL RELATIONS

Here we present the mathematical formulation of
the Bayesian method used in this article. The
equations are particularly given for the second
example described in the text.

The variables used are exactly the same as in
the text: x1 and x2 are the uncalibrated radiocar-
bon ages of sample 1 and 2 with their measure-
ment errors s1 and s2. Q1 and Q2 are the cali-
brated true ages of the to samples and m(Q) is the
radiocarbon calibration curve. L1(x1*Q1) (read:
“the probability L1 of x1 given Q1”) and L2(x2*Q2)
are the one-dimensional likelihood functions for
single sample calibration. The notation
L1(x1*Q1) means, that L1 is the conditional prob-
ability to measure the value x1 when having a
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true age Q1. L(x1,x2*Q1,Q2) is the multi-dimen-
sional likelihood function. A(Q1,Q2) is the prior
probability for the special case, that Q1 is known
to be older then Q2 by a particular age differ-
ence d with an uncertainty sd. Further
P(Q1,Q2*x1,x2) is the multi-dimensional posterior

probability. This is the conditional probability,
that the particular combination of age Q1 and
age Q2 is the true one, when having measured x1

and x2. Finally, P1(Q1*x1,x2) and P2(Q2*x1,x2) are
the marginal posterior probabilities of the true
age of sample 1 and sample 2.

324 Franz Weninger, Peter Steier, Walter Kutschera, Eva Maria Wild

Bibliography




